4D imaging to assay complex dynamics in live specimens

Daniel Gerlich and Jan Ellenberg

A full understanding of cellular dynamics is often difficult to obtain from time-lapse microscopy of single optical sections. New microscopes and image-processing software are now making it possible to rapidly record threedimensional images over time. This four-dimensional imaging allows precise quantitative analysis and enhances visual exploration of data by allowing cellular structures to be interactively displayed from many angles. It has become a key tool for understanding the complex organization of biological processes in live specimens.

Following the advent of indirect immunofluorescence during the 1960s, fluorescence microscopy has become an indispensable tool for localizing proteins in fixed specimens, and it often complements in vitro analyses of molecular mechanisms. The recent availability of a wealth of new vital markers for fluorescence microscopy1 also allows defined molecular species to be conveniently labelled and, therefore, molecular assays to be carried out in live cells. In particular, green fluorescent protein (GFP) can be used to visualize virtually any protein in live cells4, and a large number of GFP variants are now available, which have different spectral properties3 and allow simultaneous detection of multiple tagged proteins (see also the review on page S1 of this supplement).

When highly dynamic and spatially complex structures, such as live cells and organisms, are imaged, a more complete representation is achieved by recording the data in three spatial dimensions over time (four-dimensional (4D) imaging)6,7. This generates complex data, typically consisting of thousands of individual image slices, which can occupy several gigabytes of storage space per experiment. Such data require dedicated computational tools for their quantitative analysis. Here, we review typical 4D acquisition systems, important considerations for 4D experiments, and image-processing procedures for visualization and quantitation; in addition, we highlight the applications of this emerging approach in cell biology.

Acquiring 4D sequences

General considerations for 4D imaging. The fundamental consideration for any 4D live-cell imaging device is to keep the specimen alive during the acquisition of 100–1,000 images over a long period. A suitable and stable environment has to be provided, ensuring a constant temperature and a stably buffered culture medium. After this, the other significant concern in 4D imaging is the limited number of photons available to acquire fluorescence images from each cell. This is due to the limited number of fluorescent molecules that can be introduced into a cell at physiological concentrations and the limited photon yield before oxidation — which terminates fluorescence — for each fluorophore. Excessive illumination will lead to loss of

from one optical section to the next) is achieved by either moving the specimen with a z-scanning stage, or by moving the microscope objective with a high-precision motor (piezo-stepper). To use the limited number of photons most efficiently, it is crucial to maximize efficiency of light collection and the sensitivity on 4D-imaging systems. This means that all optical components should be optimized to transmit the emission wavelengths of the desired fluorophores. Another important aspect of 4D imaging is the resolution along the z axis, which, in light microscopes, is about threefold lower than resolution along the x and y axes; this causes anisotropy in the recorded 3D image. Two alternative microscopy techniques are routinely used for the acquisition of 4D images with optimized z resolution. First, widefield fluorescence deconvolution microscopes homogeneously illuminate the whole specimen and grab the entire image simultaneously on a charge-coupled device (CCD) camera. Image stacks are then processed using iterative algorithms that assign out-of-focus light back to the fluorescent object it came from in the correct focal plane. In this manner, deconvolution can yield high-resolution 3D information from widefield images.10,11. By contrast, confocal laser-scanning microscopes excite the fluorophore by moving a focused laser beam line-by-line over the specimen and record each image pixel sequentially on a point detector — the photomultiplier tube. A confocal aperture in front of the detector rejects out-of-focus light before it reaches the detector and confocal stacks therefore immediately yield 3D images with good axial resolution.12 Deconvolution and confocal microscopes both have their specific advantages and disadvantages, which depend on the specific biological application (TABLE 1).

Revealing hidden structure

GFP-fusion proteins are commonly used as markers to highlight cellular structures. However, in the steady-state situation of a live cell, proteins are generally not restricted entirely to their target compartment (for example, the kinetochore, a protein complex that mediates binding of microtubules to chromosomes during mitosis) but a significant fraction can be present as an unbound pool (for example, in the cytoplasm).13 This might result in a diffuse background that can entirely mask the structure of interest. Alternatively, the same protein that marks a small structure of interest, such as a vesicle, can also localize predominantly to larger structures such as the Golgi apparatus, which would obscure the vesicle with its bright signal.14 In both situations, the undesired signal can be removed specifically before the start of a time-lapse experiment on a confocal microscope by using a technique that is referred to as selective photobleaching.15 By exposing selected sample regions to very high laser intensity, undesired background fluorescence can be removed.13,14 This technique works only when the marker is bound stably to the structure of interest over the time course of the experiment, so that equilibration with the bleached region is prevented.

Figure 1 | Acquisition and processing of four-dimensional image data. a | Schematic of 4D image acquisition. A normal rat kidney (NRK) cell, which is expressing histone 2B (H2B) tagged with cyan-fluorescent protein (CFP) to allow visualization of chromatin, was imaged during mitosis. Selected stacks are shown at prophase, prometaphase and metaphase (from left to right). The original 4D image size was 512*512*18*36*12 (x, y, z, time, channels, bit depth; size units are in pixels), which corresponds to 764 megabytes and 1944 slices. b | The gallery shows a subset (8%) of all of the image slices from a. Raw images are filtered by using anisotropic-diffusion filtering to selectively remove background noise without degrading the image. c | Maximum and mean intensity projections of filtered image stacks from a. d | Volume rendering from different viewing angles. Rendering was performed on stacks with 72 z-slices, which were interpolated from the 18 z-slices of the original stacks. e | Rendered surface reconstructions. For animated display, see Movie 1 online.
Cellular structures frequently have amorphous shapes, vary from cell to cell and undergo dynamic changes, all factors that make quantitative structural measurements extremely difficult or impossible. To circumvent this problem, spatially controlled photobleaching on a confocal microscope can also be used to introduce artificial landmarks in homogeneously fluorescent structures in an approach called pattern photobleaching. Again, this is possible when the fluorescent marker tightly binds to the structure of interest. A good example is in nuclear lamins, which dissociate from the nuclear lamina only over a time course of many hours. So, a pattern, such as a grid, can be bleached into the homogeneously fluorescent nuclear envelope that is labelled with GFP-lamin B10. Using high-numerical aperture objectives, the bleaching is restricted to an axial section of about 2–3 µm thickness, which even allows the bleaching of 3D patterns at different optical sections, albeit with relatively low axial resolution19 (FIG. 2a). The resolution of the bleach can be improved by using two-photon excitation that is restricted to a smaller volume23.

A refinement of labelling with bleach marks involves co-expression of two different spectral variants of GFP that are fused to the same cellular marker protein. When different regions are selectively photobleached in one channel only, a combinatorial labelling scheme can discriminate up to three differently labelled structures in cellular regions that would otherwise be homogeneously labelled by these markers19,20 (FIG. 2b). An inverse alternative to labelling with bleach marks is photoactivation in selected regions: a recently generated variant of GFP can have its fluorescence properties altered such that it emits fluorescent light under 488 nm excitation only after previous exposure to strong 413 nm light22. Although labelling methods that are based on selective bleaching are not unique to 4D-imaging applications, they can markedly enhance the ability to track and quantify dynamic structural changes in time-resolved 3D data sets.

Image visualization and quantitation

The problem of noise

As for any digital fluorescence microscope image, potential error sources that might impair visualization and bias quantification of 4D images need to be considered. A first step in 4D image analysis is the removal of any signal that does not originate from the specimen (‘noise’). Noise is generated by fluctuations in illumination (laser/arc-lamp intensity) and, to a lesser degree, by thermal fluctuations inside CCD cameras or photomultiplier tubes (‘dark/shot noise’). Any noise source leads to increased unspecific signal and makes the identification of specific fluorescent structures more difficult. Many noise-reducing image processing filters are now available that efficiently reduce shot noise, which typically occurs in random single pixels across the image11. For example, anisotropic-diffusion filters take into account local image characteristics and therefore selectively remove shot noise without degrading the image (FIG. 1b).

In addition to noise, unspecific background signal — for example, from autofluorescence of the culture medium — impairs image analysis. So, even after noise filtering, the background of the image at regions outside the fluorescent structure is generally not zero. To quantitatively relate pixel intensity to fluorophore concentration, the background signal has to be removed from the image. This can be achieved by subtracting the mean background intensity, determined in a region outside the fluorescent structure, from all pixels.

Qualitative and quantitative visualization

The principle aim of 4D visualization is to display the full information from thousands of individual image slices in an intuitive and interactive way. Early studies visualized 4D data by arranging all image slices in an ‘image gallery’, which allowed the browsing and highlighting of selected structures13 (FIG. 1b). Although this guarantees that no information is lost, it is not intuitive and requires a well-trained observer to imagine the 3D structure. Alternatively, 4D data can be projected in the x–y plane, neglecting the z dimension22–24 (FIG. 1c). Although this allows a more intuitive access to the data by viewing it as a simple 2D movie, it sacrifices spatial information. Different algorithms are available for such projections: for example, maximum intensity projection produces images that have a particularly high contrast of small structures (FIG. 1c). However, it does not quantitatively represent fluorescence concentrations and cannot be used for further analysis. Instead, mean-intensity projection should be used for quantification, although it does not produce such crisp images (FIG. 1c). Mean-intensity projections can be useful to measure relative fluorophore concentrations and their

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison between deconvolution and confocal microscopes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Deconvolution microscope</td>
</tr>
<tr>
<td>Lateral (x,y) resolution</td>
<td>~250 nm</td>
</tr>
<tr>
<td>Axial (z) resolution</td>
<td>~700 nm</td>
</tr>
<tr>
<td>Acquisition speed</td>
<td>Dependent on fluorescence intensity; up to ~50 frames/s</td>
</tr>
<tr>
<td>Photon efficiency</td>
<td>Higher than confocal microscope</td>
</tr>
<tr>
<td>Evaluation of images during experiment</td>
<td>Difficult; full-resolution images only available after off-line computational image restoration</td>
</tr>
<tr>
<td>Image-processing artefacts</td>
<td>Can appear with inappropriate deconvolution algorithm parameters or too low signal-to-noise ratio of raw data</td>
</tr>
<tr>
<td>Maximum thickness of specimen</td>
<td>~40 µm</td>
</tr>
<tr>
<td>Multi-colour imaging</td>
<td>Sequential acquisition of different channels by framewise filter switching</td>
</tr>
<tr>
<td>Flexibility in excitation wavelength</td>
<td>Full flexibility</td>
</tr>
<tr>
<td>Selective photobleaching</td>
<td>Not possible except in specialized systems, in which lasers have been incorporated into the light path for this purpose</td>
</tr>
<tr>
<td>Recent applications</td>
<td>Cajal body movements21, centromere dynamics24, biogenesis of nucleoli27, interphase chromosome dynamics31</td>
</tr>
</tbody>
</table>

*Values are approximate for standard applications in cell biology.
dynamic changes over time. This can be used as an approximation of the real concentration of fluorescently labelled molecules, which can only be derived from 3D analysis (see below and REF. 25). Changes of protein concentration over time are important for many cell-biological processes, and recent work has measured such changes during organelle morphogenesis30, protein targeting26 and transport27,28, changes in cell shape and signal-transduction events39.

A realistic view of animated 3D-image sequences from interactively defined viewing directions can be achieved by using computer rendering and display in virtual-reality viewers10,25,30,31 (FIG. 1d,e). Two alternative rendering methods are VOLUME RENDERING and SURFACE RECONSTRUCTION32. Volume rendering is a technique for visualizing 3D images without explicitly defining the boundary of fluorescently labelled structures (FIG. 1d). In the simplest case, each optical section is expanded to its real height and these flat layers are then stacked on top of each other to generate a spatial view. As a result of the lower resolution along the optical axis in 4D live-cell recordings, side views that are rendered in this way are frequently of poor quality. Their resolution can be enhanced by insertion of virtual z-slices between subsequent optical sections based on interpolation between these two images (FIG. 1d, side view). Although volume-rendering techniques achieve a satisfactory display of biological structures, these methods are limited to pure visualization and do not deliver any quantitative information.

Surface reconstruction visualizes 3D structures after the definition of boundaries of fluorescent structures by surface polygons. The most commonly used isosurface reconstruction defines the 3D structure by thresholding the whole 4D data set. In this way, every voxel — the volume element of the 3D image — below the threshold grey value is defined as outside the structure and every voxel above the threshold value is defined as inside the structure, creating clearly defined object boundaries32 (FIG. 1a and 1b). The drawback of this method is that the surface of many biological structures is not well represented by a single-intensity value. An example is the nuclear envelope, which is typically labelled by fluorescently tagged membrane proteins that also localize to the endoplasmic reticulum (ER). In this case, some regions of the nuclear envelope can have similar levels of brightness as the ER, making their separation by a single threshold impossible. Therefore, an alternative approach for surface reconstruction is to detect object boundaries in each 2D optical section separately and to reconstruct 3D models from these outlines. In contrast to 3D data sets, many different segmentation techniques are available for 2D images34 that achieve better definition of biological objects than simple thresholding. After object contours have been defined in 2D, interpolation algorithms can then be used to reconstruct 3D surfaces from them with high resolution35 (FIG. 1e).

Generally, surface reconstruction achieves a more detailed display of small structures than volume rendering, but it often requires much more user interaction during image processing to avoid artefacts. Importantly, only the object definition of reconstructed surfaces can be used to generate absolute quantitative data, such as the volume of a structure or the concentration of the fluorophore.
inside the structure. Such data allows changes in volume and/or concentration for specific cellular structures over time to be measured, which can be very useful to study organelle morphogenesis23,35.

Quantitative evaluation of dynamic 3D structures: volumes and concentrations. Measuring the volume of cellular compartments and the absolute concentration of molecules within these compartments over time in live cells would be ideally suited for analysis of many biological processes by kinetic modelling. So far, the processes to which this has been applied include membrane trafficking, nuclear transport, transcription and nuclear assembly23. Traditionally, the volume of cellular structures is often inferred from area measurements in single optical sections or in projections of image stacks. However, this does not take into account the shape or orientation of a given structure. Moreover, when movies are analysed, flattening or expansion along the optical axis during the experiment can impair volume measurements. As an example, expansion of daughter nuclei will be strongly overestimated when measured in 2D image sequences because of the significant flattening of the nuclei that occurs during attachment to the culture dish after mitotic division23. Volume measurements require boundary detection of cellular structures23,26. When combined with surface reconstruction, the volume of visualized cellular structures can be measured directly.

Grey values in digital images can be directly converted to fluorophore concentrations after appropriate calibration27,28, which makes 4D imaging suitable for quantitative assays that monitor changes in molecular concentrations in live cells. In defined cellular compartments, 4D measurements of fluorophore protein concentrations are carried out by dividing the sum of the intensities by the volume of the segmented structures. Similar to volume measurements, this produces more precise results than measurements of 2D movies, particularly when there is an inhomogeneous background from a soluble fraction of the labelled protein that is outside the structure of interest. For instance, surface measurements of membrane-bound organelles, such as the nucleus or the plasma membrane, are more problematic than volume- or fluorescence-concentration measurements because light microscopes generally do not resolve small-membrane invaginations or protrusions. Therefore, surface measurements in light-microscopy images, although possible using reconstructed surface models, will generally underestimate the real surface size.

Motion analysis by single-particle tracking. Insight into many dynamic processes has been derived from tracking the movement of fluorescently labelled structures. Such studies have, for instance, measured the motion of chromosomes24,26,40–42, nuclear bodies27,43 (FIG. 2c), membrane vesicles along microtubules44, dendritic spines in pyramidal neurons45 and migrating neuronal precursor cells46. To quantitate the motion patterns of a set of distinct structures, single-particle tracking methods are appropriate. Tracking can be done by manually identifying and tracing moving objects in 4D data sets, but it is often very time-consuming to gather and analyse enough data to obtain statistically significant results in this way. Automated single-particle tracking of cellular structures involves three steps of image processing. First, objects have to be identified by using segmentation algorithms. Second, the corresponding objects are detected in successive frames by using a tracking algorithm, which produces trajectories that can be graphically visualized24–26 (FIG. 2c). Finally, the trajectories can be further analysed to determine properties such as the mean and maximum velocities, the accelerations, and the mean square displacement or diffusion coefficients25,47,48.

A difficulty in quantitative motion analysis of cellular structures is caused by global movements or deformations of the whole specimen during the acquisition period. Such global movements must be separated from the specific local movements of the structures of interest. This can be achieved by measuring only the relative movements of individual objects46. A more refined correction for global movements uses registration algorithms that can correct for translation, rotation and even global deformations48.

Future directions

4D imaging has come of age as a powerful tool for the study of dynamic function in live cells. By taking into account all the above-listed limitations, 4D imaging gives us access to new worlds of dynamic function in live cells. By taking both space and time into account, processes that involve, for example, changes in structure, compartmentalization, fluxes, directed
transport and signal-mediated localization, can be studied quantitatively in real time. With appropriate fluorescent molecular reporters, quantitative and kinetic in vivo assays for almost any biological process of interest can be designed in the laboratory. The ultimate goal will be to make these assays sufficiently rapid and robust to use them to perform gain- and loss-of-function studies in live cells. To understand complex living systems, we will have to get used to thinking routinely in four dimensions.

Gene Expression and Cell Biology/Biophysics Programmes

European Molecular Biology Laboratory

Meyerhofstrasse 1, D-69117 Heidelberg, Germany.

Correspondence to J.E.

e-mail: jan.ellenberg@embl-heidelberg.de

Please cite this article as a supplement to volume 5 of *Nature Cell Biology*, pages S14–S19.

doi:10.1038/nch1033

Acknowledgments

The authors thank J. R. Swedlow, P. Lehnert, J. Beaudouin and F. Mars-Baumgarten for helpful comments on the manuscript. J. R. S. is also acknowledged for providing figure 2c. D. G. is supported by a European Molecular Biology Organization long-term fellowship. J. E. acknowledges support from the Human Frontiers Science Programme.

Online links

DATABASES

The following terms in this article are linked online to:

LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/

FURTHER INFORMATION

Confocal Laser Light Microscopy: http://www.els.net/els/ FDA/default.htm?ID=88899AB2-A7F0-41B7-851D- C67C34A63324

Deconvolution Fluorescence Light Microscopy: http://www.els.net/els/FDA/default.htm?ID=4D7D112-A7F7- 4D5F-8655-A98F1A15DE7E

Jan Ellenberg’s web site: http://www.embl-heidelberg.de/externalinfo/ellenberg/

Access to this Interactive links box is free online.