sma-1 encodes a β_H-spectrin homolog required for Caenorhabditis elegans morphogenesis

Caroline McKeown*, Vida Praitis* and Judith Austin†
Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
*Both authors contributed equally to this work
†Author for correspondence
Accepted 20 March; published on WWW 6 May 1998

SUMMARY

Morphogenesis transforms the C. elegans embryo from a ball of cells into a vermiform larva. During this transformation, the embryo increases fourfold in length; present data indicates this elongation results from contraction of the epidermal actin cytoskeleton. In sma-1 mutants, the extent of embryonic elongation is decreased and the resulting sma-1 larvae, although viable, are shorter than normal. We find that sma-1 mutants elongate for the same length of time as wild-type embryos, but at a decreased rate. The sma-1 mutants we have isolated vary in phenotypic severity, with the most severe alleles showing the greatest decrease in elongation rate. The sma-1 gene encodes a homolog of β_H-spectrin, a novel β-spectrin isoform first identified in Drosophila. sma-1 RNA is expressed in epithelial tissues in the C. elegans embryo: in the embryonic epidermis at the start of morphogenesis and subsequently in the developing pharynx, intestine and excretory cell. In Drosophila, β_H-spectrin associates with the apical plasma membrane of epithelial cells; β-spectrin is found at the lateral membrane. We propose that SMA-1 is a component of an apical membrane skeleton in the C. elegans embryonic epidermis that determines the rate of elongation during morphogenesis.

Key words: C. elegans, Morphogenesis, Actin cytoskeleton, Spectrin

INTRODUCTION

Morphogenesis, the creation of form during development, occurs by a diverse set of mechanisms including cell proliferation, cell migration and changes in cell shape. Coordination of morphogenetic changes in individual cells can create large-scale changes at the level of the tissue or whole organism. A striking example of this is seen in C. elegans where, during morphogenesis, cell elongation produces a fourfold increase in the length of the embryo (Sulston et al., 1983; Priess and Hirsh, 1986).

Previous work suggested that the outermost cell layer, the epidermis, has a critical role in altering the shape of the embryo during C. elegans morphogenesis (Priess and Hirsh, 1986). The cells of the epidermis originate on the dorsal surface of the embryo and migrate ventrally to enclose the embryo at the start of morphogenesis (Priess and Hirsh, 1986; Williams-Masson et al., 1997). Shortly after the epidermis encloses the embryo, the epidermal actin cytoskeleton reorganizes, forming an array of parallel actin fibers, and the embryo begins to elongate (Priess and Hirsh, 1986). These actin fibers are located just under the apical plasma membrane of the epidermis, oriented around the circumference of the embryo and perpendicular to its anterior-posterior axis. As elongation progresses, the actin fibers decrease in length and there is a corresponding decrease in width and increase in length of the epidermal cells.

Embryonic elongation is dependent on the actin cytoskeleton: treatment with cytochalasin D prevents elongation and causes elongating embryos to retract to almost their original length (Priess and Hirsh, 1986). Based on these observations, it is believed that contraction of the epidermal actin fibers generates the force that causes the change in epidermal cell shape and constricts the underlying cell layers, resulting in elongation of the embryo.

Subsequent studies have lent support to the proposed role of the epidermal actin cytoskeleton in C. elegans morphogenesis. Recent work has shown that the hmp-1, hmp-2 and hmr-1 genes encode C. elegans homologs of α-catenin, β-catenin and cadherin, respectively, and that all three are required to anchor the circumferential actin fibers to the epidermal adherens junctions (Costa et al., 1998). hmp-1 and hmp-2 mutant embryos begin elongation, but then retract back to their original length as the actin fibers in the dorsal epidermis detach from the adherens junctions. In hmr-1 mutants, detachment of epidermal actin fibers is also observed, although defects in epidermal enclosure of the embryo prevent elongation. In these mutants, the actin fibers continue to decrease in length after separation from the adherens junctions, supporting the model that during morphogenesis they provide the contractile force required for elongation of the C. elegans embryo. Although there is no direct evidence for the presence of myosin in the epidermal actin fibers, mutations in let-502, a C. elegans
member of the family of Rho kinases, block normal elongation; this phenotype is suppressed by mutations in the \textit{mel-11} gene, which encodes a homolog of the regulatory subunit of smooth muscle myosin phosphatase (Wissman et al., 1997). Together, these results point to a central role for the epidermal actin cytoskeleton in \textit{C. elegans} morphogenesis.

In this paper, we describe experiments which show that the \textit{sma-1} gene is required for a normal rate of elongation during embryonic morphogenesis. We find that \textit{sma-1} embryos are viable but elongate slowly, resulting in abnormally short larvae. Morphogenesis of the pharynx and the excretory cell are also abnormal. \textit{sma-1} RNA is expressed in the epidermis during early morphogenesis, suggesting that SMA-1 acts in the epidermis during elongation. In addition, the presence of \textit{sma-1} RNA in the developing pharynx and excretory cell points to an independent role for SMA-1 in the morphogenesis of these tissues.

\textit{sma-1} encodes a homolog of \(\beta_H\)-spectrin, a novel spectrin isoform identified as the product of the \textit{Drosophila} \textit{Karst} gene (Dubreuil et al., 1990; Thomas et al., 1998). Spectrin is a heterodimeric actin-binding protein, composed of \(\alpha\)- and \(\beta\)-spectrin subunits, that forms a cytoskeletal network associated with the plasma membrane (Bennett and Gilligan, 1993). \(\beta_H\)-spectrin contains additional spectrin repeats and an SH3 domain not present in conventional \(\beta\)-spectrins, and shows non-conservation of an ankyrin-binding sequence present in \(\beta\)-spectrin (Dubreuil et al., 1990; Thomas et al., 1997). In the cell, \(\beta\) and \(\beta_H\)-spectrins form non-overlapping regions of membrane skeleton; in epithelial cells, \(\beta\)-spectrin is associated with the lateral plasma membrane and \(\beta_H\)-spectrin is found in the apical region of the cell (de Cuevas et al., 1996; Lee et al., 1997; Dubreuil et al., 1997). As described in the accompanying paper (Thomas et al., 1998), \textit{Karst} mutants have defects in eye development that indicate that \(\beta_H\)-spectrin is required for appropriate signaling between developing ommatidia. Based on the \textit{sma-1} mutant phenotype and similarity between \textit{SMA-1} and \(\beta_H\)-spectrin, we propose that SMA-1 plays both structural and regulatory roles during morphogenesis of the \textit{C. elegans} embryo.

MATERIALS AND METHODS

General methods and strains

Maintenance of worm strains was as described by Brenner (1974). All strains were grown at 20°C. The wild-type parent of all strains used was \textit{C. elegans} var. Bristol, strain N2. In addition to the \textit{sma-1} allele described below, the following mutations were used: \textit{fem-1(hc17ts) IV, unc-42(e270) N, daf-11(mu84) N, sma-1(e30)V} (Hodgkin, 1997). \textit{sma-1} mutants used in all experiments were self-progeny of homogenous \textit{sma-1} hermaphrodites. Living animals were observed using Nomarski differential interference contrast microscopy.

Isolation of \textit{sma-1} alleles

Three EMS-induced mutations (\textit{mu81}, \textit{mu82} and \textit{mu83}), isolated in an \(F_1\) clonal screen, were shown to be \textit{sma-1} alleles based on phenotype, map position and failure to complement \textit{sma-1(e30)}. We obtained seven additional EMS-induced \textit{sma-1} alleles (\textit{ru1}, \textit{ru2}, \textit{ru3}, \textit{ru9}, \textit{ru10}, \textit{ru11} and \textit{ru12}) and nine psoralen-induced alleles (\textit{ru6}, \textit{ru7}, \textit{ru13}, \textit{ru14}, \textit{ru15}, \textit{ru16}, \textit{ru17}, \textit{ru18} and \textit{ru19}) using a \textit{sma-1} non-complementation screen. Briefly, \textit{fem-1(hc17ts)V, unc-42(e270)N} \(L_4\) larvae, which develop as females when raised at 25°C (Nelson et al., 1978), were mutagenized with EMS or psoralen/UV (Yandell et al., 1994) and crossed to \textit{sma-1(mu83)/+ or sma-1(e30)/+} males; progeny from this cross were screened for the \textit{Sma} phenotype. Potential \textit{sma-1} mutants were crossed to \(N_2\) males; animals homozygous for the new \textit{sma-1} allele were obtained by picking \textit{Unc Sma} animals among the \(F_2\) progeny of this cross. All \textit{sma-1} mutants isolated were recessive and did not show a maternal effect (data not shown).

A migration assay was used in some \textit{sma-1} noncomplementation screens. Unlike wild-type animals, newly hatched \textit{sma-1} \(L_1\) larvae fail to chemotax to their food source, \textit{E. coli}. (V. Praitis and J. Austin, unpublished data). \(L_1\) larval progeny from \textit{fem-1(hc17ts); unc-42(e270) female \times sma-1(e30)/+} male crosses were placed at the center of 60 mm NGM plates seeded with \textit{E. coli} at their perimeter. During a 1 hour incubation at 20°C, most non-\textit{Sma} larvae migrated to the \textit{E. coli} lawn; animals remaining at the center of the plate were screened for the \textit{Sma} phenotype.

Immunofluorescence

Animals were fixed and stained by a modification of the method described by Kenyon (1986). Embryos or larvae were placed on polylysine-coated microscope slides, coverslips placed on top and frozen on dry ice. After removal of the coverslip, slides were fixed in \(-20°C methanol (7 minutes) and \(-20°C acetone (7 minutes) and rehydrated in an ethanol series (90%, 60%, 30%; 2 minutes each) followed by PBS (150 mM NaCl, 10 mM NaPO\textsubscript{4}, pH 7.4). Slides were incubated with either MH27 (Francis and Waterston, 1991) or 9.2.1 (Miller et al., 1986) monoclonal antibodies followed by rhodamine-conjugated goat anti-mouse IgG (Cappel). Incubations were at 37°C in PBS/1% BSA/1% normal goat serum. Slides were mounted using 2% N-propyl gallate in 80% glycerol/20% PBS.

Comparison of wild-type and \textit{sma-1} larval development

We determined brood size by counting eggs laid by individual hermaphrodites (\(N_2, n=5; sma-1(ru7), n=8; sma-1(e30), n=8; sma-1(ru18), n=9\)). Egg counting continued until no eggs were laid in a 16 hour period. Some \textit{sma-1} hermaphrodites had an \textit{Egl} (egg laying defective) phenotype that resulted in internal hatching of eggs. In this case, larvae and unhatched eggs contained in the hermaphrodite were also counted. Percentage hatching was determined by allowing approx. 30 gravid hermaphrodites to lay eggs for 1-3 hours, incubating eggs for 15 hours at 20°C and counting unhatched eggs. Total number eggs tested: \(N_2, n=247; sma-1(ru7), n=222; sma-1(e30), n=265; sma-1(ru18), n=195\).

To determine time required to reach adulthood at 20°C, we used eggs laid in a 2-3 hour period; hatched larvae were counted 24 hours later. Plates were examined every 8-12 hours for up to 7 days to determine when each animal molted to become an adult. Number of larvae examined: \(N_2, n=138; sma-1(ru7), n=82; sma-1(e30), n=108; sma-1(ru18), n=123\). The percentage of animals that reached adulthood was calculated as number of larvae that became adults within 7 days divided by the number of larvae present 24 hours after egg-laying.

Length measurements of embryos and larvae

To measure changes in length during morphogenesis, embryos were placed on agar pads in Egg Buffer (Edgar, 1995), coverslips placed on top and sealed with microscope oil, and viewed using Nomarski microscopy. For each time point, a video recording of multiple focal planes was made. Embryo length was determined from the recording using a Scalemaster II digital ruler. \(T=0\) was start of division of the \textit{AB} blastomere. Length measurements were made every 30 minutes from \(T=4\) hours until \(T=12\) hours. To compare wild-type and \textit{sma-1} elongation rates, comma-stage embryos were videotaped as described above. \(T=0\) was when the embryo reached 1.5-fold stage. Length measurements were made every 30 minutes for 2.5 hours. Length measurements of newly hatched larvae (within 1 hour of hatching) were made as described above. Three body regions were measured: head (tip of nose to posterior end of pharynx), body...
(posterior end of pharynx to anal opening) and tail (anal opening to tip of tail) (Fig. 1A). Total body length was calculated as the sum of the three measurements. The percentage increase in body length during larval development was calculated by comparing the length of molting L4 larvae, measured as described above, with that of newly hatched larvae.

Comparison of embryonic development in sma-1 and wild-type embryos

N2 and sma-1(ru18) embryos were placed on agar pads and incubated at 20°C. T=0 was start of division of the AB blastomere. In the first experiment, we determined when embryos reached the 26-cell stage (designated to be when the P3 blastomere completed its cell division to form D and P4) and when body-wall muscles began to twitch. In a second experiment, embryos were videotaped at 30 minute intervals starting at T=10 hours to determine the start of pharyngeal cuticle formation and of pharyngeal pumping. Formation of pharyngeal cuticle was scored based on increased refractivity at the luminal surface of the terminal bulb (Sulston et al., 1983).

Cloning and sequencing sma-1

sma-1(mu83) hermaphrodites were transformed with genomic clones by germ-line DNA injection; pPD10.46, which expresses a partial unc-22 antisense transcript, was used as a coinjection marker (Fire et al., 1991). A pool of five cosmids (T04A9, C10C2, R07A10, F09F2 and C52E4) rescued the sma-1 phenotype. In transformations with individual cosmids (K12G11, T04A9, C10C2 and R07A10) only C10C2 rescued the sma-1 phenotype. Concentration of injected cosmids was 0.1 µg/µl. Transformation with 0.1 µg/µl pAZ9 did not rescue the sma-1 phenotype; transformation with 0.8 µg/µl produced three independent lines in which the sma-1 phenotype was rescued.

Antisense RNA transcripts for germ-line injection were generated by in vitro transcription of pAZ4 (Fig. 5C) (MegaScript, Albinon, Austin, Texas) and purified using GlassPac (National Scientific). 4/5 hermaphrodites injected with 1 µg/µl sma-1 RNA produced progeny that matched the sma-1 mutant phenotype. The percentage of sma-1 phenocopies produced by each hermaphrodite varied from 33% to 89% of total progeny; brood sizes varied from 104 to 236. The remaining injected animal had a small number (17) of only wild-type progeny.

The sma-1 gene product was initially identified by partial sequencing of pAZ9; the complete genomic sequence of the sma-1 locus was provided by the C. elegans Genome Consortium (Waterston and Sulston, 1995). Sequences shown are based on the genomic sequence; intron locations were determined by comparison with sma-1 cDNA sequences. sma-1 cDNAs were obtained by screening oligo-dT and random-primed C. elegans cDNA libraries (libraries provided by L. Miller (Rhind et al., 1995) and R. Barstead). Two sma-1 cDNA clones, yk96e11 and cm18c11, were identified from collections of C. elegans Expressed Sequence Tag (EST) cDNA clones. A 685 bp region of the sma-1 coding sequence, encoding amino acids 2481-2708, was not covered by any of our sma-1 cDNAs. Inspection of sma-1 genomic sequence and comparison with the corresponding β-spectrin protein sequence indicated that this region did not contain an intron. An alternative splice was observed near the 3’ end of the gene, which removed nucleotides 11535-11864 from the sma-1 cDNA sequence, corresponding to amino acids 3846-3955. The GenBank accession number for the sma-1 cDNA sequence is AF053496.

The extent of the sma-1(rl18) deletion was determined by PCR amplification and sequencing of the deletion breakpoint. Sequencing of four independent subclones from a PCR reaction gave identical results: the sma-1(rl18) deletion removes 1703 bp of sma-1 coding sequence and a 48 bp intron, and at the site of the deletion, an additional 28 bp of sequence are inserted that do not match sequences elsewhere in the sma-1 gene. As a result, there is a frameshift in the sma-1(rl18) coding sequence relative to the wild-type sequence; the predicted sma-1(rl18) gene product would contain the initial 208 amino acids of SMA-1, plus 23 novel amino acids before premature termination of translation at the first stop codon.

RNA isolation and northern analysis

Total RNA was prepared from mixed-stage embryos by extraction with phenol and guanidium thiocyanate (RNA STAT-60, Tel-Test ‘B’ Inc., Friendswood, TX), separated by formaldehyde gel electrophoresis and transferred to nylon membrane in 10x SSC. To allow comparison of sma-1 and myo-2 hybridizations, 40 µg samples of total RNA were split and run on two halves of a single gel. After transfer, one half of the membrane was hybridized with each probe. Hybridization of membrane-bound RNA was carried out using the Genius system of Digoxigenin (DIG)-based nucleotide detection (Boehringer-Mannheim). sma-1 (pAZ4) and myo-2 (pJK191) transcribed RNA probes were prepared using 30% DIG-11-UTP:70% UTP.

In situ hybridization

Subclones from sma-1 (pAZ4) and unc-54 (pTR128) were used to make DIG-labeled single-stranded DNA probes (Patel and Goodman, 1992). In situ hybridization was carried out by a modification of the method described by Seydoux and Fire (1994). Solutions and the method of alkaline phosphatase-mediated detection were as previously described. In our modified protocol, after formaldehyde fixation and hybridization, embryos were washed for 30 minutes at 48°C in each of the following solutions: Hyb; 3 parts Hyb/2 parts PTw; 1 part Hyb/4 parts PTw; PTw. Embryos were then washed for 30 minutes in PBT at room temperature prior to alkaline phosphatase-mediated detection. Primary identification of fixed and hybridized embryos at different stages of morphogenesis was based on embryo shape. For embryos in early morphogenesis, the distinctive morphology of the epidermal cells was used to determine embryo orientation and the extent of epidermal enclosure. Identification of the sma-1 RNA-expressing cell in the ventral head region as the excretory cell was based on comparison of the location of the stained cell in fixed embryos with the location of the excretory cell in living embryos at several different stages of embryonic development.

RESULTS

Mutations in the sma-1 gene alter C. elegans morphology

In the C. elegans embryo, early cell proliferation is followed by a period of morphogenesis during which the embryo undergoes a fourfold elongation (Sulston et al., 1983) (Fig. 1A). At hatching, wild-type C. elegans larvae are long and thin with a pointed nose and tapering tail (Figs 1B, 2A). In contrast, we found that larvae homozygous for mutations in the sma-1 gene are short and wide with a blunt nose and a crooked tail (Fig. 2C,D). The severity of this phenotype varies between sma-1 alleles. Three sma-1 alleles, sma-1(rl7), sma-1(e30) and sma-1(rl18), described in detail in this paper, represent the range of phenotypes observed. When we measured newly hatched larvae, we found that homozygotes for each sma-1 mutation had a characteristic length (Table 1). The mildest allele, sma-1(rl7), reduced body length by 27% relative to wild type (Fig. 2C); homozygotes of a moderate allele, sma-1(e30), were 39% shorter than wild type. The allele that produced the most severe phenotype, sma-1(rl18), reduced body length by 44% and appears to be a sma-1 null allele (see below) (Fig. 2D). The decreased length of sma-1 mutants is not due to a defect in a single body region. Comparing the head, central body and tail regions in wild-type and sma-1 larvae, we found

SMA-1 spectrin is required for morphogenesis 2089
a proportionate decrease in the length of each body region (Fig. 1B; Table 1).

Additional morphological phenotypes are observed in sma-1 mutants. The pharynx, a neuromuscular tube that forms the first portion of the C. elegans digestive tract, is dramatically altered in sma-1 mutants. The pharynx contains four regions that can be easily distinguished in wild-type animals: the procorpus and isthmus are narrow and elongated, while the metacorpus and terminal bulb are globular (Albertson and Thomson, 1976) (Figs 1B, 2B). In sma-1 mutants, all four pharyngeal regions are present but the procorpus and isthmus fail to elongate (Fig. 2E). In addition, the cuticle of sma-1 mutants is twisted and the excretory cell canal, required for osmotic regulation, is short and abnormally shaped (M. Buechner and E. Hedgecock, personal communication).

In spite of their morphological defects, all of the sma-1 mutants we examined are both viable and fertile as homozygotes (Table 2). sma-1 mutants have a smaller brood size than wild type, but sma-1 and wild-type eggs have a similar rate of hatching. In sma-1 mutants with a severe phenotype, such as sma-1(ru18), larval development takes place more slowly than normal and although most animals eventually become adults, some are pale, thin and do not lay eggs (Table 2).

sma-1 mutants elongate more slowly than wild-type embryos

By comparing the development of wild-type and sma-1 embryos, we found that sma-1 embryos do not elongate normally. Early development of sma-1 embryos appeared normal: both wild-type and sma-1 embryos reached the 26-cell and comma stages at similar times (Fig. 3A-D). During morphogenesis, however, sma-1 embryos did not increase in length to the same degree as wild-type embryos (Fig. 3E,F). To determine if abnormal morphogenesis of the sma-1 embryos was due to an alteration in epidermal cell number or pattern, we used MH27, a monoclonal antibody that recognizes the apical junctions of C. elegans epidermal cells (Francis and Waterston, 1991). We found that the number and arrangement of epidermal cells in sma-1 embryos was the same as that in wild-type embryos (Fig. 3G,H). The sma-1 elongation defect is specific to embryogenesis: during larval development, the percentage increase in length for sma-1(ru18) and wild-type animals is similar (Table 2).

To determine the nature of the elongation defect in sma-1 embryos, we measured the progressive change in length during morphogenesis in wild-type and sma-1 embryos (Fig. 4A). We found that wild-type and sma-1 embryos elongate for the same period of time, but that the rate of elongation was decreased in the sma-1 mutants. Elongation of wild-type and sma-1 embryos began at the same time, about 4.5 hours after the first cell division. Between the comma and 1.5-fold stages (6-6.5 hours), wild-type and sma-1 rates of elongation diverged, with the sma-1 embryos elongating more slowly than wild type. For both wild-type and sma-1 embryos, significant elongation ceased between 9 and 10 hours after the first cell division. Because the wild-type and sma-1(ru18) embryos elongated for similar periods of time, we conclude that the decreased elongation rate of the sma-1 embryos is the primary cause of their mutant phenotype.

Fig. 1. (A) C. elegans embryogenesis lasts 13 hours at 20°C and can be divided into three periods: cell proliferation, morphogenesis, and a final period of cell differentiation and cuticle formation (Sulston et al., 1983). The diagram shows stages of embryogenesis, from left to right: 2-cell; early cleavage; late cleavage; comma; 2-fold; late morphogenesis; newly hatched larva. During morphogenesis, different stages can be distinguished by embryo shape: lima bean stage embryos have a small ventral indentation; comma stage embryos have begun to elongate; at 1.5-fold stage, the posterior region of the embryo extends halfway up the length of the egg, and at 2-fold stage, all the way up the length of the egg. (B) Diagram of wild-type C. elegans larva at hatching: head, body and tail regions are indicated. The head region contains the pharynx, consisting of two narrow regions (procorpus and isthmus) and two globular regions (metacorpus and terminal bulb) (Albertson and Thomson, 1976). (C) Schematic diagram of epidermal actin fibers in a 2-fold embryo. Thick lines indicate epidermal cell boundaries, thin lines represent actin fibers; actual number of actin fibers is greater than that shown. In the dorsal and ventral epidermis, actin fibers are parallel and located just under the apical membrane. Actin fibers are also observed in the lateral epidermis (Priess and Hirsh, 1986; Costa et al., 1997), but their precise arrangement has not been determined; one possible pattern is shown.

Different sma-1 mutants elongate at different rates

We compared the elongation of different sma-1 mutants to determine whether differences in elongation rate could account for their differences in length. For each mutant the change in length was measured every 30 minutes over a 2.5 hour period starting at the 1.5-fold stage; our previous experiments had shown that this is the period of most rapid elongation (Fig. 4B). The most linear period of elongation was between 0.5 and 2.0 hours after the 1.5-fold stage; for each sma-1 mutant we calculated an elongation rate by linear regression of the data from this 1.5 hour period (Table 3). We found that all of the sma-1 mutants elongated at a slower rate than the wild-type embryos and that for each sma-1 allele, the rate of elongation
SMA-1 spectrin is required for morphogenesis

2091SMA-1 spectrin is required for morphogenesis

Table 1. Length defects in newly hatched sma-1 mutant larvae

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Length at hatchinga (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Wild type (N2)</td>
<td>245±6</td>
</tr>
<tr>
<td>sma-1(ru7)</td>
<td>178±6</td>
</tr>
<tr>
<td>sma-1(e30)</td>
<td>150±7</td>
</tr>
<tr>
<td>sma-1(ru18)</td>
<td>137±11</td>
</tr>
</tbody>
</table>

aLarval lengths were measured within 1 hour of hatching.
bThe length from the tip of the nose to the posterior end of the pharynx.
cThe length from the anus to the end of the tail.

Fig. 2. sma-1 mutants are shorter than wild-type animals at hatching. Wild type (A), sma-1(ru7) (C) and sma-1(ru18) (D) larvae were photographed within 1 hour of hatching. The sma-1 mutants are shorter and broader than wild type, with a rounded head and a short crooked tail. To compare pharyngeal morphology, wild-type (B) and sma-1(ru18) (E) L1 larvae were stained with 9.2.1, a monoclonal antibody that recognizes pharyngeal myosin (Miller et al., 1986). Arrows indicate boundaries between regions of the pharynx described in Fig. 1A. Bar in D, 10 µm (also applies to A,C); bar in E, 10 µm (also applies to B).

corresponded to the severity of its mutant phenotype (Table 1; Table 3).

To rule out the possibility that the decreased elongation rate of sma-1 mutants was due to a decrease in the overall rate of embryonic development, we compared timing of developmental events in wild-type and sma-1 embryos. We chose events that span C. elegans embryogenesis: formation of the 26-cell embryo, first twitch of the body wall muscles, deposition of pharyngeal cuticle and start of pharyngeal pumping, which occurs just prior to hatching. We found that all four events took place at similar times in wild-type and sma-1(ru18) embryos (Table 4). The similar timing of these events in wild-type and sma-1 embryos indicates that the decreased elongation rate of sma-1 embryos is not due to a change in the rate of embryonic development. In particular, we found that the period between the first twitching of the body wall muscles, which occurs just at the start of elongation, and deposition of the pharyngeal cuticle, which occurs shortly after the end of elongation, was similar in wild type and sma-1 mutants. This result demonstrates that during the period of embryonic elongation, sma-1 embryos develop at a normal rate.

sma-1 encodes a homolog of Drosophila βH-spectrin

We used transformation rescue to identify genomic DNA containing the sma-1 gene. Previous mapping data showed that sma-1 is located on Chromosome V; 3-factor crosses failed to separate sma-1 from a cloned gene, osm-6 (Starich et al., 1995). Germ-line transformation with the cosmid C10C2, which contains genomic DNA located near the osm-6 locus, rescued the phenotype of sma-1(mu83) mutants (Fig. 5B; see Materials and Methods). Transformation with either K12G11 or R07A10, two cosmids that overlap C10C2, did not rescue the sma-1 phenotype.

To test whether sma-1 was located in the region of C10C2 not included in either K12G11 or R07A10, sma-1(mu83) animals were transformed with pAZ9, an 11 kb BamHI subclone of C10C2 (Fig. 5B). Germ-line injection of 0.1 µg/µl pAZ9 DNA had no effect, but injection of 0.8 µg/µl pAZ9 rescued the sma-1 mutant phenotype (see Materials and Methods). Initial sequencing showed that pAZ9 contained coding sequence for a member of the spectrin family of cytoskeletal proteins (Winkelmann and Forget, 1993). The ability of pAZ9 DNA to rescue the sma-1 phenotype, but only at a high concentration, suggested that this subclone contained part but not all of the sma-1 gene.

We confirmed that pAZ9 contained coding sequence for the sma-1 gene product using RNA-mediated interference. In C. elegans, germ-line injection of either sense or antisense RNA into wild-type animals can result in progeny that phenocopy the mutant phenotype of the gene from which the RNA was transcribed (Guo and Kemphues, 1995). Although the mechanism underlying this phenomenon is not yet understood, it has been observed for a number of genes (Rocheleau et al., 1997). When we injected RNA transcribed from a region of potential sma-1 coding sequence (pAZ4, Fig. 5C) into wild-type animals, 33-89% of the progeny had the characteristic sma-1 phenotype: decreased length, increased width and a blunt nose (see Materials and Methods).

The sma-1 protein (SMA-1) coding sequence was determined by comparing genomic sequences from the region
of the \textit{sma-1} gene with a series of overlapping cDNAs (Fig. 6; Kershaw, 1996; Lennard, 1997; see Materials and Methods). pAZ9 contains a majority of the \textit{sma-1} coding sequence, but lacks both its 5' and 3' ends (Fig. 5C); the mechanism by which injection of pAZ9 DNA at a high concentration rescues the \textit{sma-1(mu83)} phenotype is presently unknown. Using Southern analysis we found that this locus was altered in several \textit{sma-1} alleles. \textit{sma-1(ru18)} and \textit{sma-1(ru19)} contain deletions near the 5' end of the \textit{sma-1} gene (Fig. 5C; data not shown). Sequencing across the \textit{sma-1(ru18)} deletion breakpoint confirmed that there is a 1.8 kb deletion in this mutant that creates a frameshift in the \textit{sma-1} coding sequence (see Materials and Methods). Two other alleles, \textit{sma-1(ru13)} and \textit{sma-1(ru16)}, also had altered patterns of \textit{sma-1} genomic DNA restriction fragments (data not shown).

\textbf{SMA-1 is a 4063-amino-acid protein that contains 30 copies of the 106-amino-acid spectrin repeat (Fig. 6). In addition, SMA-1 contains an N-terminal actin-binding domain, an SH3 domain and a C-terminal pleckstrin homology (PH) domain. The two major classes of spectrin proteins, α- and β- spectrins, can be distinguished by their arrangement of spectrin repeats and other protein domains (Winkelmann and Forget, 1993) (Fig. 7A). Comparing SMA-1 with previously identified spectrins we found that its pattern of protein domains was identical to that of β_H-spectrin, a novel β-spectrin isoform identified in \textit{Drosophila} (Dubreuil, 1990; Thomas et al., 1997) (Fig. 7B). Alignment of the SMA-1 and β_H-spectrin sequences gave 37\% amino acid identity (data not shown).

SMA-1 and β_H-spectrin share features that distinguish them from other identified β-spectrins. SMA-1 and β_H-spectrin each contain 30 spectrin repeats rather than the 17 spectrin repeats found in conventional β-spectrins; both proteins also contain an SH3 domain not found in other β-spectrins. For conventional β-spectrins, binding to ankyrin is an important means of membrane attachment; in SMA-1 and β_H-spectrin, sequences required for β-spectrin to bind ankyrin (Kennedy et

Table 2. Life cycle of \textit{sma-1} mutants

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Brood size(^a)</th>
<th>% Hatched eggs</th>
<th>% Adults(^b)</th>
<th>Time to adult(^c) (days)</th>
<th>% Increase in length as larvae(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type (N2)</td>
<td>321±23</td>
<td>100</td>
<td>100</td>
<td>2.0±0.1</td>
<td>357</td>
</tr>
<tr>
<td>\textit{sma-1(\textit{ru7})}</td>
<td>289±38</td>
<td>98</td>
<td>94</td>
<td>2.2±0.6</td>
<td>n.d.</td>
</tr>
<tr>
<td>\textit{sma-1(\textit{e30})}</td>
<td>125±93</td>
<td>97</td>
<td>99</td>
<td>3.0±0.7</td>
<td>n.d.</td>
</tr>
<tr>
<td>\textit{sma-1(\textit{ru18})}</td>
<td>189±46</td>
<td>98</td>
<td>95</td>
<td>3.5±0.8</td>
<td>442</td>
</tr>
</tbody>
</table>

\(^a\)Average number of eggs ± s.d. produced by one hermaphrodite.
\(^b\)Percentage of animals that undergo the L4 molt within 7 days.
\(^c\)Average number of days ± s.d. from egg laying to L4 molt.
\(^d\)Percentage increase in length from hatching to L4 molt; n.d., not determined.

Table 3. Elongation rate of wild-type and \textit{sma-1} embryos

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Rate of elongation(^e) (\textmu m/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (N2)</td>
<td>51±5</td>
</tr>
<tr>
<td>\textit{sma-1(\textit{ru7})}</td>
<td>28±8</td>
</tr>
<tr>
<td>\textit{sma-1(\textit{e30})}</td>
<td>20±3</td>
</tr>
<tr>
<td>\textit{sma-1(\textit{ru18})}</td>
<td>10±4</td>
</tr>
</tbody>
</table>

\(^e\)Rates were derived from the measurements of elongating embryos described in Fig. 4B. Length measurements were made every 30 minutes over a 2.5 hour period. Rates shown were derived by linear regression of the central four data points (0.5-2.0 hours). For each mutant the elongation rates of individual animals were determined and then averaged. Wild type (N2), \textit{n=7}; \textit{sma-1(\textit{ru7})}, \textit{n=8}; \textit{sma-1(\textit{e30})}, \textit{n=8}; \textit{sma-1(\textit{ru18})}, \textit{n=9}. The average correlation coefficient for each mutant was 0.96.
SMA-1 spectrin is required for morphogenesis

al., 1991) are poorly conserved. *Drosophila* β-spectrin has 65% amino acid identity with a consensus sequence of β-spectrin ankyrin-binding domains (Dubreuil et al., 1990; Thomas et al., 1997), but comparing SMA-1 and βH-spectrin with this consensus sequence gave only 28% and 39% amino acid identity, respectively (Fig. 6B; Thomas et al., 1997). Based on their identical organization and distinctive differences from other β-spectrins we propose that *sma-1* is the *C. elegans* homolog of *Drosophila* βH-spectrin.

sma-1 is specifically expressed at the start of morphogenesis

sma-1 probes recognize a band of approximately 14 kb on northern blots of total embryonic RNA (Fig. 8). In RNA isolated from the two *sma-1* deletion mutants, *sma-1(ru18)* and *sma-1(ru19)*, the *sma-1* message was decreased both in size and abundance relative to wild type. In *C. elegans*, premature termination of translation is correlated with an increased rate of mRNA turnover (Pulak and Anderson, 1993). Therefore, the decreased level of *sma-1* message may be due to frameshifts introduced by the deletions in *sma-1(ru18)* and *sma-1(ru19)*.

Using whole-mount RNA in situ hybridization, we found that *sma-1* transcripts are present in the embryonic epidermis at the start of morphogenesis (Fig. 9). In a population of mixed-stage embryos hybridized with a *sma-1* antisense probe, *sma-1* RNA was not observed in pre-morphogenesis embryos. In particular, there was no sign of *sma-1* transcripts in early cleavage-stage embryos (2-8 cells), indicating that maternal *sma-1* RNA is not contributed to the embryo (data not shown). At the start of morphogenesis, the cells of the epidermis form a patch on the posterior dorsal surface of the embryo and then spread ventrally and anteriorly to enclose the embryo (Priess and Hirsh, 1986; Williams-Masson et al., 1997). In embryos just beginning morphogenesis, the cells of the epidermis form a patch on the posterior dorsal surface of the embryo and then spread ventrally and anteriorly to enclose the embryo (Fig. 9A).

Examining embryos at successive stages of morphogenesis, we found that the location of the *sma-1* RNA changed in a pattern that exactly matched the movements of the migrating epidermal cells. During early morphogenesis, when the epidermal cell sheet spreads over the lateral surfaces of the

Fig. 5. Cloning *sma-1*. (A) *sma-1* is located in the central region of Chromosome V. (B) Cosmids mapped to the *osm-6* region of Chromosome V were tested for their ability to rescue the *sma-1* mutant phenotype (see Materials and Methods). In tests of individual cosmids, only C10C2 showed rescuing activity; pAZ9, an 11 kb *BamHI* subclone of C10C2, rescued the *sma-1* mutant phenotype when injected at a high concentration. (C) The *sma-1* locus. Exons are indicated by boxes; *BamHI* (B), *SphI* (S) and *XhoI* (X) restriction sites are indicated. Location of deletions in *sma-1(ru18)* and *sma-1(ru19)* are shown as gaps in the lines below the restriction map. Regions of genomic DNA contained in pAZ4 and pAZ9 are shown at the bottom.
Fig. 6. SMA-1 sequence. (A) SMA-1 consists of a series of spectrin repeats interspersed with other protein domains. In this figure, protein sequences from Drosophila (Dros.), mouse and human Drosophila - and -spectrin, and SMA-1. For each sequence, dots indicate amino acids that match the consensus sequence.
embryo, we observed **sma-1**-expressing cells on the dorsal and lateral surfaces of the embryo, but not on the ventral surface or in the head region, which at this stage are not yet covered by the spreading epidermis (Fig. 9B-D). In cross-section, it can be seen that the **sma-1** RNA is located in the outermost cell layer of the embryo (Fig. 9C). As morphogenesis progresses, the spreading epidermis encloses first the ventral surface of the embryo and then the head as the embryo bends ventrally and begins to elongate. In embryos at this stage of morphogenesis, we found a corresponding pattern in which **sma-1** RNA was seen first on the ventral surface (Fig. 9E) and then on the anterior (head) surface of the embryo (Fig. 9F). At the same time, we found that the overall level of **sma-1** RNA rapidly increased as the embryo began to elongate (compare Fig. 9E-G). **sma-1** RNA in the epidermis was not observed in embryos past the 2-fold stage.

In addition to **sma-1** expression in the cells of the epidermis, we observed a line of **sma-1** RNA in the interior of the embryo, oriented along the anterior-posterior axis (Fig. 9C, E-G). Based on its location, we determined that this **sma-1** RNA is located in the developing digestive tract of the embryo, consisting of the pharynx and intestine (Fig. 1B). During early morphogenesis, it is difficult to determine the anterior extent of **sma-1** staining in the interior of the embryo (Fig. 9C), but as the embryo begins to elongate, the level of **sma-1** RNA increases and at the 1.5-fold stage **sma-1** RNA is clearly present in both the pharynx and intestine (Fig. 9G). A lower level of pharyngeal/intestinal RNA was observed in 2- to 3-fold stage embryos (Fig. 9H). In these older embryos, **sma-1** RNA was also found in the excretory cell and in an unidentified cell near the anus.

The pattern of **sma-1** RNA detected by in situ hybridization points to a stage and tissue-specific pattern of **sma-1** expression in the *C. elegans* embryo during morphogenesis. We observed expression of **sma-1** RNA in several epithelial tissues: epidermis, pharynx, intestine and excretory cell. **sma-1** RNA was not seen in the body wall muscle cells, which are arranged in four stripes underlying the epidermis (Sulston and Horvitz, 1977; Sulston et al., 1983). The highest level of **sma-1** RNA was observed in the epidermis during the early stages of morphogenesis, prior to when differences are observed between development of wild-type and **sma-1** embryos. Thus both the spatial and temporal patterns of **sma-1** expression support the hypothesis that SMA-1 spectrin acts as a component of the epidermal actin cytoskeleton to regulate the morphogenesis of the *C. elegans* embryo.

DISCUSSION

SMA-1 is required for a normal rate of elongation during embryonic morphogenesis

In this study, we have shown that the reduced length of **sma-1** larvae is due to a decreased rate of elongation during embryonic morphogenesis. Although **sma-1** is clearly required for normal morphogenesis, our data indicates that it is not an essential gene. The **sma-1** alleles we have isolated vary in the severity of their elongation defect, but all are viable and fertile including two alleles, **sma-1(ru18)** and **sma-1(ru19)**, that have deletions near the 5’ end of the **sma-1** gene. We sequenced the deletion breakpoint of **sma-1(ru18)** and found that it creates a frameshift in the **sma-1** coding sequence. In northern blots, the level of **sma-1(ru18)** message was decreased relative to wild type, consistent with the presence of a premature stop codon in the **sma-1** coding sequence. In agreement with this result, antibodies that recognize the SMA-1 C terminus do not detect protein in **sma-1(ru18)** extracts (V. Praitis, unpublished data). Based on these results, we conclude that **sma-1(ru18)** is a null allele of the **sma-1** gene.

By whole-mount in situ hybridization, we found that **sma-1** RNA is expressed in the embryonic epidermis, supporting previous data that indicated a primary role for the epidermis in

Table 4. Developmental timing is normal in **sma-1 embryos**

<table>
<thead>
<tr>
<th>Genotype</th>
<th>26-cell stage (minutes±s.d.)</th>
<th>First muscle twitch (minutes±s.d.)</th>
<th>Pharyngeal cuticlea (hours±s.d.)</th>
<th>Pharyngeal pumpingb (hours±s.d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type (N2)</td>
<td>67±3</td>
<td>364±7</td>
<td>11.0±0.5</td>
<td>12.0±0.5</td>
</tr>
<tr>
<td>sma-1(ru18)</td>
<td>69±2</td>
<td>364±7</td>
<td>11.0±0.5</td>
<td>12.0±0.5</td>
</tr>
</tbody>
</table>

*a*Animals were examined every 30 minutes starting at T=10 hours for a change in refractivity in terminal bulb of the pharynx.

*b*Animals were examined every 30 minutes starting at T=10 hours.

Fig. 7. Spectrin organization. (A) Organization of α- and β-spectrins (Winkelmann and Forget, 1993). (B) The arrangement of protein domains is similar in SMA-1 and βH-spectrin; both proteins contain a total of 30 spectrin repeats and a similarly located SH3 domain. Thick lines indicate sequences bordering the SH3 and PH domains that do not show sequence similarity between SMA-1 and βH-spectrin. ABD, actin-binding domain; EF, EF hand domain.
sma-1 RNA is decreased in size and abundance relative to wild type. In contrast, sma-1 and sma-1(ru18) RNA isolated from wild-type, epithelial cells; however, because these two tissues will form the intestine are composed of a single cell layer of polarized epithelial cells. As the epidermal cell sheet migrates over the embryo and encloses it, the dorsal surface of the embryo at the start of morphogenesis; it will be interesting to determine whether there is a set of genes required for morphogenesis that are coordinately expressed in the epidermis at this time.

Expression of sma-1 RNA was also seen in the developing pharynx and intestine. Like the epidermis, both pharynx and intestine are composed of a single cell layer of polarized epithelial cells; however, because these two tissues will form the C. elegans digestive tract, the apical surface of these cells faces inwards, towards the future site of the lumen. We found that sma-1 RNA is located in a thin line that corresponds to the midline of the pharynx and intestine; we propose that this line is created by apical localization of sma-1 RNA within these cells.

Although sma-1 mutants develop at a normal rate as embryos, we find that for sma-1 mutants such as sma-1(ru18), which have a severe phenotype, there are delays in larval development. This phenotype may be due to defects in food intake: in sma-1 mutants pharyngeal morphogenesis is abnormal and may result in impaired function. In addition, sma-1 mutants have abnormally shaped excretory cell canals; defects in excretory cell function have been shown to result in slow larval development (M. Buechner and E. Hedgecock, personal communication).

SMA-1 and Drosophila βH-spectrin identify a new class of β-spectrins

The sma-1 gene encodes a homolog of Drosophila βH-spectrin. The arrangement of protein domains in SMA-1 and βH-spectrin are identical: actin-binding, SH3 and PH domains are located at the same relative positions and each protein contains the same number of spectrin repeats. These two proteins differ from previously identified β-spectrins in that they contain a greater number of spectrin repeats and an SH3 domain. In addition, a conserved sequence found in conventional β-spectrins, which had been shown to bind ankyrin (Kennedy et al., 1991), is poorly conserved in both SMA-1 and βH-spectrin. The lack of ankyrin-binding sequence conservation suggests that in SMA-1 and βH-spectrin this protein interaction domain is either non-functional or binds a protein other than ankyrin. In support of this hypothesis, it has recently been shown that Drosophila β-spectrin, but not βH-spectrin, is able to bind ankyrin when expressed in Drosophila S2 cells (Dubreuil et al., 1997).

In both C. elegans and Drosophila, there are genes encoding α-spectrin (Dubreuil et al., 1989; Gattung and Wilson, 1996; K. Norman and D. Moerman, personal communication) and β-spectrin (Byers et al., 1989; Gattung et al., 1996; S. Moorthy and V. Bennett, personal communication) in addition to SMA-1/βH-spectrin. Drosophila α-spectrin can form heterodimers with either Drosophila β- or βH-spectrin (Dubreuil et al., 1990). In the cell, Drosophila α-spectrin colocalizes with both β- and βH-spectrin, but the two β-spectrin isoforms form non-overlapping domains of membrane-associated cytoskeleton (de Cuevas et al., 1996; Lee et al., 1997; Dubreuil et al., 1997). The distinction between β- and βH-spectrin localization within the cell is particularly clear in epithelial cells: βH-spectrin is apically localized, while β-spectrin is found at the lateral plasma membrane (Thomas and Kiehart, 1994). The basis of this difference in location has not yet been determined, but is probably due to the distinctive differences between β- and βH-spectrin. Apical localization of βH-spectrin may occur via binding to a ligand of the SH3 domain; conversely, β-spectrin may associate with the lateral membrane via its interaction with ankyrin. We find that sma-1 RNA is expressed in multiple epithelial tissues in the C. elegans embryo. Based on its similarity to βH-spectrin, we propose that SMA-1 will also be found apically localized in the epithelial cells where it is expressed.

Previous studies suggest that a protein similar to SMA-1 and βH-spectrin is present in vertebrates as well as invertebrates. Analysis of the chick intestinal brush border identified a
Fig. 9. Location of *sma-1* RNA in *C. elegans* embryos by whole-mount in situ hybridization. Embryos were hybridized with pAZA DIG-labeled antisense probe. In all pictures anterior is to the left. (A) Early morphogenesis; lateral view, mid-focal plane, dorsal is at top of photograph. *sma-1* RNA is present in cells on the posterior dorsal surface of the embryo. (B-D) Early morphogenesis (older than A); dorsal view, multiple focal planes of single embryo. (B) Upper focal plane; *sma-1* RNA is present in the cells of the dorsal epidermis. (C) Mid-focal plane; *sma-1* RNA is seen in the outermost layer of cells, except in the region of the head. Arrowhead, early *sma-1* RNA expression in the intestine. (D) Lower focal plane; *sma-1* RNA is seen in a small group of cells on the left and right side of the ventral surface (arrowheads). The position of these *sma-1* expressing cells corresponds to that of the 'leading cells' (Williams-Masson et al., 1997), which initiate ventralward migration of the epidermis and are the first epidermal cells to reach the ventral surface. (E-H) Lateral view; mid-focal plane, dorsal is at top of photograph. By lima bean stage (E), *sma-1* RNA is present on the ventral surface of the embryo (arrowhead); by comma stage (F), *sma-1* RNA is present on the anterior surface of the embryo (arrowhead). *sma-1* expression in pharynx and intestine is most apparent in 1.75-fold stage embryos (G); arrow marks location of boundary between pharynx and intestine. At the 2.5-fold stage (H) *sma-1* RNA is not detected in the epidermis, but is still present in the intestine. Additional *sma-1* expression is seen in the excretory cell (white arrowhead) and an unidentified cell near the anus (white arrow). Bar in H is 10 μm.

SMA-1 spectrin is required for morphogenesis

Role of SMA-1 in *C. elegans* morphogenesis

We find that SMA-1 protein is required to determine cell shape in multiple epithelial tissues during morphogenesis. Mutations in the *sma-1* gene produce defects in the morphogenesis of the epidermis, pharynx and excretory cell. *sma-1* message is expressed in all three of these tissues, as well as in the intestine, at a time when they are undergoing morphogenetic changes in cell shape.

Multiple lines of evidence indicate that elongation of the *C. elegans* embryo during morphogenesis is the result of contraction of apically localized actin fibers in the epidermis (Fig. 1C; Priess and Hirsh, 1986; Wissman et al., 1997; Costa et al., 1998). The *sma-1* gene encodes a homolog of *Drosophila* βH-spectrin, which in combination with α-spectrin forms tetramers that can cross-link actin. In *Drosophila*, βH-spectrin is apically localized in polarized epithelia. Our present model is that in the *C. elegans* embryonic epidermis, SMA-1/α-spectrin tetramers form an elastic network that links the actin fibers to each other and to the apical membrane of the epidermis. The presence of this SMA-1-based membrane skeleton would act to stabilize the actin fiber array as the epidermal cells elongate during morphogenesis.

sma-1 mutant embryos elongate at a slower rate than wild type, with each allele exhibiting a characteristic elongation rate. The decreased elongation rates of *sma-1* mutants are consistent with a role for SMA-1 in stabilizing the arrangement of the epidermal actin cytoskeleton. Disruption of a SMA-1-based membrane skeleton might alter the pattern of actin fibers, causing a reduction in the contractile force produced by the actin fibers. Alternatively, SMA-1 may act as an intermediary between the actin cytoskeleton and the plasma membrane, allowing energy created by contraction of the epidermal actin fibers to be converted into cell shape change. In this case, a reduction in SMA-1 activity would reduce the efficiency with which the contractile force is converted into cell shape change.

The SMA-1 sequence suggests a structural role for this protein during morphogenesis; the decreased elongation rate of *sma-1* mutants suggests that this protein also plays a role in regulation of morphogenesis. The newly hatched *C. elegans* larva has a constant diameter, requiring that interactions between the epidermal cells coordinate the process of elongation along the length of the embryo. SMA-1 may be a target of these regulatory interactions or may serve as a cytoskeletal binding site for signal transduction molecules. In addition, there is evidence for regulation of elongation by interactions between tissues in the embryo: in *Pat* (paralyzed, arrested elongation at two-fold) mutants, which have structural defects in muscle function or attachment, elongation stops prematurely at the 2-fold stage (Williams and Waterston, 1994). Although the *sma-1* mutant phenotype differs from that of *Pat* mutants, SMA-1 may be a downstream target affected by the muscle-epidermis interaction. Future experiments will clarify the function of SMA-1 in the actin cytoskeleton and allow us to identify proteins that act with SMA-1 to control the process of cell shape change during *C. elegans* morphogenesis.

We thank members of the Austin, Ferguson and Mahowald laboratories for many helpful discussions and for critical reading of the manuscript. We also thank Graham Thomas, Ronald Dubreuil and Mike Costa for sharing results prior to publication. Initial isolation of *sma-1* mutants was carried out in the laboratory of Cynthia Kenyon. cDNA libraries used in this work were provided by Lelani Miller and Robert Barstead; plasmids were provided by Tom Evans and Ed Maryon; monoclonal antibodies were provided by David Miller and...
REFERENCES

