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ABSTRACT
Dorsal intercalation is a coordinated cell migration event that rearranges hypodermal cells during C.
elegans embryogenesis, and that resembles cell intercalation in many systems from flies to mice.
Despite its conservation, the molecular mechanisms that govern dorsal intercalation in worms have
remained elusive. Here, we comment on our recent publication, Walck-Shannon et al.,1 which
begins to spatially map the molecular requirements for intercalation. First, we provide a historical
perspective on the factors that have previously hampered the study of dorsal intercalation. Next, we
provide a summary of the molecular pathways identified in Walck-Shannon et al.,1 pointing out
surprises along the way. Finally, we consider the potential conservation of the molecular pathway
we described and discuss future questions surrounding dorsal intercalation. Despite the challenges,
dorsal intercalation is a process poised to advance our understanding of cell intercalation during
morphogenesis throughout the animal kingdom.
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The uncharted territory: How protrusions
function during dorsal intercalation

Dorsal intercalation is a visually striking, coordinated
cell movement that rearranges right and left hand dor-
sal hypodermal cells shortly after their specification in
the developing embryo.2,3 Specifically, 2 rows of cells
extend across the dorsal array, as their nuclei migrate
contralaterally.4,5 Shortly after intercalation is com-
plete, the intercalating cells fuse to form a syncytium
(hyp7). Drug studies performed nearly 20 y ago indi-
cated that actin is required for dorsal intercalation;
electron microscopy further indicated that the tips of
cells extend basolaterally during intercalation.2 How-
ever, the molecular pathways that link actin and
medial tip extension remained unexplored.

Dorsal intercalation involves polarization along
multiple axes

As a coordinated movement within a sheet of cells,
dorsal intercalation involves cell polarity along multi-
ple axes. Although whether the dorsal hypodermis is a
fully organized epithelium that constitutes a perme-
ability barrier remains an open question, it is clear

that it expresses many classical markers of a bona fide
epithelium.6 First, as nascent epithelial cells, dorsal
hypodermal cells display apicobasal polarity. Apical
junctions, which include both the cadherin-catenin-
complex and the more basal DLG/AJM complex, are
assembled as intercalation ensues. Second, orthogonal
to the apicobasal axis, dorsal cells display a striking
mediolateral polarity, as their medial edges point
toward the dorsal midline and their rounded, lateral
edges maintain contact with non-intercalating seam
cells. While others have tackled how hypodermal cells
acquire apicobasal polarity,6 how dorsal cells acquire
mediolateral polarity was completely uncharted.

What has made intercalation hard to study?

Several features of dorsal intercalation have made it a
challenging process to study. First, dorsal intercalation
mutants have other phenotypes. Mutations in genes
previously published or reasonably hypothesized to be
involved in intercalation are pleiotropic; earlier defects
in events such as gastrulation or cell specification may
indirectly lead to intercalation problems. For example,
in an attempt to study the role of the Dishevelled,
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DSH-2, during dorsal intercalation, King et al.
observed cell specification defects due to DSH-2’s role
as an effector in the Wnt/b-catenin asymmetry path-
way that precluded further analysis.7 A genetic screen
identified the zinc-finger transcription factor, DIE-1,
as a key modulator of dorsal intercalation8; however,
early ubiquitous expression of DIE-1 during gastrula-
tion8,9 makes the specificity of this transcription factor
suspect. Similarly, 2 T-box transcription factors, TBX-
8 and TBX-9, were discovered to function redundantly
to promote dorsal intercalation, but body wall muscle
formation was also disrupted in these mutants.10 Cal-
cium signaling also appears to play a role in dorsal
intercalation, as embryos homozygous for weak alleles
of the inositol 1,4,5 triphosphate receptor, itr-1, have
generalized epidermal migration defects, but here, too,
there seem to be widespread defects that may be some-
what non-specific.11

A second, rather surprising, difficulty in studying
dorsal intercalation was that the loss of function of
genes sensibly predicted to have a role during dor-
sal intercalation either had no obvious effect or led
to uninterpretable phenotypes. For example, com-
ponents of the planar cell (PCP) pathway, which
polarizes sheets of intercalating cells in frogs and
fish (reviewed in12–16), seem to have minimal roles
in C. elegans; knockdown of PCP homologues led
to no observable defects during intercalation.7

Despite the observation that extending tips require
actin,2 the involvement of crucial regulators of pro-
trusive activity was also unclear. For example,
knockdown of Arp2/3 complex components17 and
ced-10/Rac118 was reported to have no effect on
intercalation, while mutations in genes encoding
WAVE complex components lead to a complete
failure of epidermal morphogenesis.18,19 We there-
fore sought to develop an approach that would
allow temporal and spatially-specific loss of func-
tion in dorsal hypodermal cells that would allow us
to systematically assess molecular requirements for
dorsal intercalation.

Charting new territory: Insights into protrusion
formation and function

What made this work possible?

In order to study dorsal intercalation more incisively,
we needed to generate a genetic tool that could both
spatially and temporally abrogate gene function in

hypodermal cells at the time of dorsal intercalation.
Interested particularly in protrusive activity, we were
keen to begin with the Rho family GTPase, ced-10/
Rac1. To do so, we manipulated the mRNA stability of
dominant transgenes expressed tissue-specifically. We
generated hypodermal-specific ced-10 transgenes har-
boring either activating (CA) or dominant-negative
(DN) mutations and encoding a 30- untranslated
region (UTR) sensitive to nonsense-mediated mRNA
decay (NMD). A temperature-sensitive mutation in a
member of the NMD machinery, smg-1(cc546ts),
allowed us to temporally control expression of these
ced-10(CA) and ced-10(DN) constructs. Using this sys-
tem, ced-10(DN) expression was able to phenocopy
previously unappreciated intercalation phenotypes
seen in a ced-10 null background. This Smg-mediated
tissue-specific, inducible system can be applied
broadly to modify the function of other genes using
characterized dominant mutations.

Additional incorporation of a valuable F-actin
reporter transgene20 allowed us to observe and quan-
tify basolateral protrusions in dorsal cells. This combi-
nation of genetic abrogation and protrusion
quantification, in addition to careful measurements of
intercalation time via DIC microscopy, gave us the
tools that we needed to reinvestigate dorsal
intercalation.

Unexpected terrain

Armed with these technological advances, we were
able to answer longstanding questions about dorsal
intercalation. We initiated our analysis by assessing
whether dorsal intercalation works like other epithelial
intercalation events, in which Rho-dependent polar-
ized junctional rearrangement drives intercalation
(reviewed in21). Our initial unpublished results
showed that neither RNAi-knockdown of junctional
components nor dominant-negative rho-1/RhoA
expression grossly interrupted intercalation. There-
fore, we chose to focus on the mediolaterally polarized
basolateral protrusions that are so prominent during
intercalation (Fig. 1A).

Mapping the protrusive territory: Rac marks the spot

F-actin imaging showed that dynamic protrusions
were clearly polarized to the extending, medial edge
during intercalation, but previous reports did not
describe intercalation phenotypes in strong ced-10 loss

e1176664-2 E. WALCK-SHANNON AND J. HARDIN

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f W

isc
on

sin
 - 

M
ad

iso
n]

, [
Je

ff 
H

ar
di

n]
 a

t 1
0:

54
 0

6 
Ju

ly
 2

01
6 



of function mutants.18,22 However, using the tissue-
specific, inducible approach described above to
express ced-10(DN), we found clear evidence that ced-
10/Rac1 is required for protrusion formation: by DIC
microscopy both embryos expressing ced-10/Rac1
dominant-negative constructs and embryos homozy-
gous for strong loss-of-function alleles took longer to
intercalate than wildtype. This clear evidence finally
gave us an entry point to construct a map of the
molecular players that control protrusive activity dur-
ing dorsal intercalation.

A key insight that arose from our experiments was
that functional redundancy is prevalent during dorsal
intercalation; often loss of the function of single genes
only resulted in subtle phenotypes (boxes in Fig. 1B).
For example, even ced-10/Rac1 loss does not
completely prevent intercalation, which is likely why
its role was overlooked previously. When ced-10/Rac1
loss is combined with the loss of another RhoGTPase,
mig-2/RhoG, however, intercalation fails completely.
In a similar fashion, we were able to implicate func-
tionally redundant downstream effectors of these
GTPases, wve-1/WAVE and wsp-1/WASP. Identifying
these redundancies was important for assessing poten-
tial upstream activators as well. Along with expression
analysis, the finding that both Rac and RhoG were
required allowed us to narrow down our list of

guanine nucleotide exchange factors (GEFs), to one
compelling candidate, which has specificity for both
Rac and RhoG, unc-73/Trio.23,24

A new player: CRML-1/CARMIL

With the identification of UNC-73/Trio as a key regu-
lator of CED-10 and MIG-2 (Fig. 1A), we next asked
how UNC-73 might be regulated. UNC-73B::GFP was
expressed uniformly along cell membranes, even
though downstream protrusive activity was clearly
polarized to the medial tips. Initially puzzled by this,
we soon discovered Gian Garriga’s group had identi-
fied a novel, conserved protein that can form a com-
plex with UNC-73, capping Arp2/3 myosin I linker,
CRML-1/CARMIL.25,26 In growth cones, crml-1 loss
can suppress unc-73 mutants, placing CRML-1 and
UNC-73 in both a physical and functional pathway.
In the dorsal epidermis crml-1 loss resulted in exces-
sive protrusions, particularly at non-medial edges,
where protrusions are normally absent. Further, an
epidermally-expressed rescuing construct was
enriched at these non-medial edges, where we
expected UNC-73/Trio to be inhibited. Genetic sup-
pression of excessive protrusions in the crml-1 mutant
by unc-73 loss provided further evidence that spatially
restricted CRML-1 may mediate polarized inhibition

Figure 1. A molecular map of dorsal intercalation. A) Three surprises from the work published in Walck-Shannon et al.1 organized
according to their apicobasal and mediolateral location. Apically, apical junction (AJs, red band) are not strictly required, Basolaterally
and medially, protrusions are polarized and contribute toward cell migration. Laterally, CRML-1/CARMIL is a polarizing cue that inhibits
UNC-73/Trio activity. B) Molecular pathway that governs dorsal intercalation organized medially (blue) and laterally (yellow). Rho family
GTPases in green, actin nucleation promoting factors in pink. Molecules boxed together are functionally redundant. At lateral edges,
the presence of CRML-1 represses UNC-73 activity, whereas the absence of CRML-1 medially allows UNC-73 activation of Rac and RhoG,
which in turn promote protrusion formation.
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of protrusive activity by downregulation of UNC-73
laterally. In the end, a complicated pathway of redun-
dancy and asymmetric inhibition during dorsal inter-
calation was finally coming into view (Fig. 1B).

Odd or familiar territory? Do these results reflect
anomalies in C. elegans?

As mentioned previously, this story was developed
after earlier results that were incongruent with the
existing epithelial intercalation literature, raising some
question about its conservation. Instead of being pow-
ered by myosin II-dependent junctional contraction,
dorsal intercalation seems to be mediated by direc-
tional protrusions, which is the predominant mecha-
nism used by intercalating mesenchymal cells.
Significantly, as we were preparing our work, Williams
and colleagues27 found that both apical junctional
rearrangement and basolateral protrusive activity
drive intercalation in the mouse neuroepithelium.
Together with previous reports of protrusive activity
in the sea urchin archenteron28 and ascidian noto-
chord,29,30 we suspect that basolateral protrusive activ-
ity represents a second, but not mutually exclusive,
mechanism that can be deployed during epithelial
intercalation. While it is unclear why dorsal intercala-
tion so prominently features basolateral protrusions,
one possibility relates to the relative immaturity of the
intercalating hypodermis. Hypodermal cells are born
immediately before intercalation begins, when junc-
tional complexes are first coalescing,31,32 making it
possible that junctions are insufficiently mature to be
major drivers of intercalation. This intriguing hypoth-
esis deserves future study.

Whether CARMIL-mediated polarization is a
widely conserved feature of intercalating epithelia also
awaits future study. While worms have only one CAR-
MIL homolog, at least 3 paralogs exist in vertebrates
(reviewed by Edwards et al.33). Like worm CRML-1,
vertebrate CARMIL1 retains the ability to co-immu-
noprecipitate with Trio,26 but seems to promote—
rather than inhibit—protrusive activity. On the other
hand, CARMIL2 seems to have roles in cell polarity
similar to worm CRML-1.26 Given this subfunctionali-
zation of vertebrate CARMILs, it is possible that any
conserved CARMIL-dependent polarization mecha-
nisms that act during intercalation might include
additional molecular players or that the relevant

pathways may have undergone some alterations of
molecular detail.

Future territory: Open questions about dorsal
intercalation

Despite the advances made by Walck-Shannon et al.,1

many questions still remain. We sketch a few of these
questions here. At the apical surface of dorsal epider-
mal cells, how are junctions rearranged during inter-
calation? Although classical planar polarization is not
obvious at the apical junctions of dorsal epidermal
cells, during intercalation junctions nevertheless must
be disassembled as one cell squeezes its way between
contralateral cells. One recent publication34 suggests
that SUMOylation of HMR-1/Cadherin is important
for normal junctional localization during dorsal inter-
calation. It is possible that this and additional post-
translational modifications of junctional components,
rather than an overall overt accumulation of junc-
tional material at preferred junctional boundaries, will
be an important aspect of junctional dynamics during
intercalation.

Orthogonal to the apicobasal axis, along the medio-
lateral axis (Fig. 2A), another question arises: how
does CRML-1/CARMIL become polarized laterally?
One testable hypothesis is that cortical flow is respon-
sible for rearward movement of CRML-1. In early C.
elegans embryos, actomyosin-based flows of molecules
associated with the inner side of the plasma mem-
brane (the cortex) are responsible for localizing a sub-
set of polarity proteins.35 If a similar mechanism
functions in the intercalating epidermis to polarize
CRML-1, there are at least 2 expectations: 1) CRML-1
should initially have a uniform distribution, which
becomes more polarized over time; and 2) perturba-
tion of the actomyosin machinery should disrupt cor-
tical flow and prevent CRML-1 polarization. Careful,
early imaging of an existing Plbp-1::crml-1::gfp trans-
gene combined with the use of temperature-sensitive
nmy-2/non-muscle myosin II mutants36 could answer
this question. Alternatively, if CRML-1 remains polar-
ized in nmy-2(ts) mutants, then it may be actively
targeted to the lateral edge through a yet-to-be-
determined binding partner.

Our study addressed the apicobasal and mediolat-
eral axes but other pre-existing axes in the embryo
may also affect intercalation. A third axis, the right-
left axis (Fig. 2B), also deserves further analysis.
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Others have reported intriguing right-left asymmetry
of vab-1/Eph37 and lat-1/latrophilin38 expression.
While the functional significance of these asymmetries
is currently unknown, defects in right/left polarity
might result in the comigration of adjacent right- or
left-hand cells across the dorsal array (Fig. 2C). How
vab-1 and lat-1 might fit into our existing understand-
ing of dorsal intercalation remains an interesting
mystery.

Much remains to be charted regarding the mecha-
nisms of dorsal intercalation, but the system is poised
for new discoveries and promises to hold many sur-
prises as its mysteries continue to yield to experimen-
tal analysis.
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